On Certain Generalized BK – Recurrent Affinely Connected and Landsberg Spaces

Fahmi Yaseen Abdo Qasem & Saeedah Mohammed Saleh baleedi Dept.of Math.,Faculty of Education, Univ. of Aden,Kormaksar,Aden, Yemen fahmi.yaseen@yahoo.com Saeedahbaleedi@gmail.com

Abstract

In this paper we introduced a generalized BK-recurrent space for which Cartan's fourth curvature tensor K_{ikh} satisfies the generalized recurrence property, i.e. characterized by the *condition*

$$
\mathcal{B}_{m}K_{jkh}^i = \lambda_m K_{jkh}^i + \mu_m \big(\delta_h^i g_{jk} - \delta_k^i g_{jh} \big) , \qquad K_{jkh}^i \neq 0 ,
$$

Which is also a finely connected space and Landsberg space, separately, where B_m is covariant differential operator with respect to x^m in the sense of Berwald, such spaces called *a* generalized BK -recurrent affinely connected space and generalized BK -recurrent *Landsberg space, respectively.*

The purpose of this paper to develop some properties of generalized BK-recurrent affinely connected space and generalized BK-recurrent Landsberg space by obtaining the condition for some tensors to possess the properties of these spaces and to obtain various identities in such space.

Keywords: Generalized BK-recurrent affinely connected space, Generalized BK-recurrent Landsberg space.

1. Introduction

 H. D. Pande and B. Singh [11] discussed the recurrence condition in an affinely connected space. A. A. A. Muhib [10] obtained some results when R^h – generalized trirecurrent and R^h – special generalized trirecurrent space are affinely connected spaces. Landsberg space of dimension 2 was first considered by G. Landsberg [7] from a standpoint of variation. Also such spaces of many dimension, ́ . Cartan [3] introduced it as one of particular cases and further L. Berwald ([1], [2]) showed that the space was characterized by $P_{ikh}^i = 0$, where P_{ikh}^i is the (hv) curvature tensor. H. Yasuda [16] gave other characterization of Landsberg space and contributed a little for the theory of Landsberg space.

Let us consider an n-dimensional Finsler space F_n equipped with the metric function $F(x,y)$ satisfies the request conditions [14].

The relation between the metric function F and the corresponding metric tensor given by

(1.1)
$$
g_{ij}(x,y) = \frac{1}{2} \dot{\partial}_i \dot{\partial}_j F^2(x,y) \ .
$$

The metric tensor g_{ij} satisfies the following relations

(1.2) a) $g_{ij}(x, y)$ $y^i = y_i$ and b) δ b) $\delta_h^i g_{ik} = g_{hk}$.

The tensor $g_{ij}(x, y)$ is symmetric and positively homogeneous of degree zero in y^i .

The two sets of quantities g_{ij} and its associative g^{ij} , which are components of a metric tensor are connected by

(1.3) $i^k = \delta_i^k = \begin{cases} 1 \\ 0 \end{cases}$ $1 \t i j \t - k,$
0 if $i \neq k$

By differentiating (1.1) partially with respect to y^k , we construct a new tensor C_{ijk} is defined by

$$
C_{ijk} = \frac{1}{2} \dot{\partial}_i g_{jk}.
$$

This new tensor C_{ijk} is positively homogeneous of degree -1 in y^i and symmetric in all its indices and called *(h)hv-torsion tensor* [8]. A according to Euler's theorem on homogeneous functions, this tensor satisfy the following:

(1.4)

$$
a) C_{ijk} y^{i} = C_{kij} y^{i} = C_{jki} y^{i} = 0
$$
,
 $b) C_{jsk} = C_{jk}^{i} g_{is}$

and

c) $C_{isk}g^{ji} = C_{sk}^i$.

Berwald's covariant derivative of the vector y^i vanish identically, i.e.

(1.5) $B_k y^i = 0.$

In general, Berwald's covariant derivative of the metric tensor g_{ij} doesn't vanish and given by

(1.6)
$$
B_k g_{ij} = -2C_{ijk|h} y^h = -2y^h B_h C_{ijk}.
$$

The curvature tensor R_{ikh}^i is called *Cartan's third curvature tensor*, it is positively homogeneous of degree zero in y^i , which defined by

 $\hat{g}_{ikh}^{i} := \partial_h \Gamma_{kj}^{*i} + (\partial_l \Gamma_{jk}^{*i}) G_{kh}^l + G_{jm}^i (\partial_k G_h^m - G_{kl}^m G_h^l) + \Gamma_{mk}^{*i} \Gamma_{jh}^{*m} - k/h^*$

The associate curvature tensor R_{iikh} of the curvature tensor R_{ikh}^i is given by

$$
(1.7) \t R_{ijkh} := g_{rj} R_{ikh}^r.
$$

The associateive curvature tensor $R_{i j k h}$ satisfies the following relation

(1.8)
$$
R_{ijkh} = K_{ijkh} + C_{ijs}H_{kh}^s.
$$

The associate curvature tensor K_{iikh} of the curvature tensor K_{ikh}^i is given by

$$
(1.9) \tK_{ikh}^r g_{rj} = K_{jikh}.
$$

Cartan's third curvature tensor R_{ikh}^i , Cartan's fourth curvature tensor K_{ikh}^i and the h(v)-torsion tensor H_{kh}^i are related by

(1.10) $i_{ikh}y^j = H_{kh}^i = K_{ikh}^i y^j$.

The h(v)-torsion tensor H_{kh}^i and the deviation tensor H_h^i are positively homogeneous of degree one and two in y^i , respectively. In view of Euler's theorem on homogeneous functions and since the contraction of indies doesn't effect on the degree of the homogeneous, we have the following relation

 $* - k/h$ means the subtraction from the former term by interchanging the indices k and h .

$$
(1.11) \tH_{kh}^i y^k = H_h^i = -H_{hk}^i y^k.
$$

A Finsler space F_n for which the curvature tensor R_{ikh}^i satisfy the following [15]:

$$
(1.12) \t B_m R^i_{jkh} = \lambda_m R^i_{jkh} , \t R^i_{jkh} \neq 0
$$

is called R^h *-recurrent space*, where λ_m and a_{lm} are non-zero covariant vector field and covariant tensor field, respectively.

Transvecting the condition (1.12) by y^j , using (1.5) and (1.10), we get

$$
(1.13) \t B_m H_{kh}^i = \lambda_m H_{kh}^i.
$$

Let the current coordinates in the tangent space at the point x_0 be x^i , then the indicatrix I_{n-1} is a hypersurface defined by

$$
(1.14) \tF(x_0, x^i) = 1
$$

or in the parametric form it is defined by

$$
(1.15) \t xi = xi(ua) , \t a = 1,2,...,n-1
$$

Now, the projection of any tensor T_i^i on the indicatrix is given by

(1.16) $i_i := T_h^a h_a^i h_i^b$ where (1.17) $c^i_i := \delta_c^i - [{}^i]_c$.

2. A Generalized Recurrent Space

Let us consider a Finsler space F_n for which Cartan's fourth curvature tensor K_i^i satisfies the condition [12]

(2.1) $\mu_{ikh}^i = \lambda_m K_{ikh}^i + \mu_m (\delta_h^i g_{ik} - \delta_k^i g_{ih})$, $K_{ikh}^i \neq 0$,

is called *a generalized BK-recurrent space* and briefly denoted by $GBK - RF_n$ where λ_m and μ_m are covariant vectors field.

We have the condition [13]

(2.2) $\hat{J}_{ikh}^{i} = \lambda_{m} R_{ikh}^{i} + \mu_{m} (\delta_{h}^{i} g_{ik} - \delta_{k}^{i} g_{ih} + C_{ih}^{i} y_{k} - C_{ik}^{i} y_{h}) + (\mathcal{B}_{m} C_{ir}^{i}) H_{kh}^{r}$

3. A Generalized Recurrent Affinely Connected Space

We shall introduce definition for a generalized BK-recurrent space to be also affinely connected space.

Definition 3.1. A Finsler space whose Berwald's connection parameter G_{kh}^i is independent of is called *an affinely connected space* (*Berwald*'s *space*).

Thus, an affinely connected space is characterized by one of the equivalent conditions

(3.1) $a) G_{ikh}^i = 0$ and $b)$ $C_{iik} = 0$.

Remark 3.1. The connection parameter Γ_{kh}^{*i} of É. Cartan and G_{kh}^i of L. Berwald coincide in affinely connected space and they are independent of the direction arguments [14], i.e. (3.2) a $G_{jkh}^i = \dot{\partial}_j G_{kh}^i = 0$ and b) $\dot{\partial}_j$ $\partial_j \Gamma_k^*$

Remark 3.2. In particular, the metric tensor g_{ij} and its associative g^{ij} are covariant constants in the sense of Berwald for affinely connected space, i. e.

(3.3) $a) \mathcal{B}_k g_{ij} = 0$ and b) $B_{\nu}q^{ij}=0$.

Definition 3.2. The generalized BK-recurrent space which is affinely connected space [satisfies any one of the conditions $(3.1a)$, $(3.1b)$, $(3.2a)$ and $(3.2b)$], will be called *a generalized BK-recurrent affinely connected space* and will be denote it briefly by GBK – *affinely connected space.*

Remark 3.2. It will be sufficient to call the tensor which satisfies the condition of $GBK -$ R –affinely connected space as *generalized* B-recurrent tensor (briefly $GB - R$).

Let us consider a $GBK - R -$ affinely connected space.

Transvecting the condition (2.2) by g_{in} , using (1.7) and (3.3a), we get

 $B_m R_{ipkh} = \lambda_m R_{ipkh} + g_{ip} \mu_m (\delta_h^i g_{ik} - \delta_k^i g_{ih} + C_{iph} y_k - C_{ipk} y_h)$ $+ (\mathcal B_m C_{irr}) H_{kh}^r$.

This shows that (3.4) $B_m R_{inkh} = \lambda_m R_{inkh}$ if and only if (3.5) $g_{in}\mu_m(\delta_h^ig_{ik}-\delta_k^ig_{ih}+C_{inh}y_k-C_{ink}y_h)+(\mathcal{B}_mC_{im})H_k^r$ Thus, we conclude

Theorem 3.1. In GBK $-R$ $-$ affinely connected space, the associative curvature tensor R_{ipkh} *behaves as recurrent if and only if (3.5) holds good.*

Transvecting the condition (2.2) by y^j , using (1.10), (1.5), (1.2a) and in view of (1.4a), we get

(3.6) $\mu_h^i = \lambda_m H_{kh}^i + \mu_m (\delta_h^i y_k - \delta_k^i y_h).$ Thus, we conclude

Theorem 3.2. In GBK $-RF_n$, Berwald's covariant derivative of first order for the $h(v)$ *torsion tensor* H_{kh}^i *is given by the condition (3.6).*

By using (3.3b), the equation [13]

 $\mathcal{B}_m K = \lambda_m K + n(n-1)\mu_m + (\mathcal{B}_m g^{jk})k$

can be written as

 $B_m K = \lambda_m K + n(n-1)\mu_m$. Thus, we conclude

Theorem 2.3.4. In GBK $-RF_n$, the curvature scalar K (of Cartan's fourth curvature tensor K_{ikh}^{i}), is non vanish.

4. A Generalized Recurrent Landsberg Space

Cartan's connection parameter Γ_{kh}^{*i} coincided with Berwald's connection parameter G_k^i for a Landsberg space which characterized by the condition

(4.1) $r = -2C$

Various authors denote the tensor $C_{jkh|l} y^l$ by P_{jkh} (H.Izumi [4], [5], [6]), and (M. Matsumoto [9]).

Remark 4.1. In view of the conditions (3.1a), (3.1b), (3.2a) and (4.1), an affinely connected space is necessarily a Landsberg space. However, a Landsberg space need not be an affinely connected space.

Definition 4.1. The generalized BK-recurrent space which is Landsberg [satisfies the conditions (4.1), will be called *a generalized BK-recurrent Landsberg space* and will be denote it briefly by $GBK - R -$ *Landsberg space.*

Remark 4.1. It will be sufficient to call the tensor which satisfies the condition of $GBK - R -$ Landsberg space as *generalized* B-recurrent tensor (briefly $GB - R$).

Let us consider a $GBK - R -$ Landsberg space.

We have the identity [14]

(4.2) $(K_{hijk} - K_{ikhi})y^j = C_{rhk}H_i^r - C_{rik}H_h^r - C_{rhi}H_k^r.$ Using (1.8) in (4.2) , we get

 (4.3) $(C_{ikr}^r + C_{ikr} H_{hi}^r)y^j = C_{rhk} H_i^r - C_{rik} H_h^r - C_{rhi} H_k^r.$

Taking the covariant derivative for (4.3) with respect to x^m in the sense of Berwald, using (1.4a), (1.5), (1.11), the symmetric property of the (h)hv-torsion C_{ijk} in all its indices and in view of (1.12) , we get

(4.4) $\lambda_m (R_{hijk} - R_{ikhi}) y^j = B_m (C_{rhk} H_i^r - C_{rik} H_h^r).$ Using (1.8), (1.4a) and (1.11) in (4.4), we get

(4.5) $\lambda_m (K_{hijk} - K_{ikhi}) y^j - \lambda_m C_{hir} H_k^r = \mathcal{B}_m (C_{rhk} H_l^r - C_{rik} H_h^r).$ Using (4.2) in (4.5) and the symmetric property of the (h)hv-torsion C_{ijk} in all its indices, we get

.

$$
\mathcal{B}_{m}(C_{rhk}H_{i}^{r} - C_{rik}H_{h}^{r}) = \lambda_{m}(C_{rhk}H_{i}^{r} - C_{rik}H_{h}^{r}) - 2\lambda_{m}C_{hir}H_{k}^{r}
$$

This shows that
(4.6)
$$
\mathcal{B}_{m}(C_{rhk}H_{i}^{r} - C_{rik}H_{h}^{r}) = \lambda_{m}(C_{rhk}H_{i}^{r} - C_{rik}H_{h}^{r})
$$

If and only if

$$
C_{hir}H_{k}^{r} = 0.
$$

Thus, we conclude

Theorem 4.1. In GBK – R – Landsberg space, the tensor $(C_{rhk}H_i^r - C_{rik}H_h^r)$ behaves as *recurrent, if and only if*

We have the identity [14]

(4.7) $K_{i}{}_{ihk} + K_{i}{}_{ki}{}_{h} + K_{i}{}_{hki} = -2(C_{i}{}_{ir}H_{hk}^r + C_{ikr}H_{ih}^r + C_{ihr}H_{ki}^r).$

Taking the covariant derivative for (4.7) with respect to x^m in the sense of Berwald, we get (4.8) $\mathcal{B}_m(K_{i j h k} + K_{i k j h} + K_{i h k j}) = -2\mathcal{B}_m(C_{i j r} H_{h k}^r + C_{i k r} H_{i h}^r + C_{i h r} H_{k j}^r).$

Transvecting the condition (2.1) by g_{ir} , using (1.9), (3.3a), (1.2a) and the symmetric property of the metric tensor g_{ij} , we get the condition

(4.9) ()

In view of the condition (4.9) and by using the property of the symmetric property of the metric tensor g_{ij} in (4.8), we get

(4.10) $\lambda_m (K_{i,hk} + K_{ikih} + K_{ihki}) = -2B_m (C_{iir} H_{hk}^r + C_{ikr} H_{ih}^r + C_{ihr} H_{ki}^r).$ Using (4.7) in (4.10), we get

(4.11) $B_m(C_{iir}H_{hk}^r + C_{ikr}H_{ih}^r + C_{ihr}H_{ki}^r) = \lambda_m(C_{iir}H_{hk}^r + C_{ikr}H_{ih}^r + C_{ihr}H_{ki}^r).$ Transvecting (4.11) by g^{is} , using (1.4c) and (3.3b), we get (4.12) $\mathcal{B}_{m}(C_{ir}^{S}H_{hk}^{r}+C_{kr}^{S}H_{ih}^{r}+C_{hr}^{S}H_{ki}^{r})=\lambda_{m}(C_{ir}^{S}H_{hk}^{r}+C_{kr}^{S}H_{ih}^{r}+C_{hr}^{S}H_{ki}^{r}).$ Transvecting (4.11) by y^h , using (1.11), (1.4a) and (1.5), we get

(4.13) $\mathcal{B}_{m}(C_{iir}H_{k}^{r}-C_{ikr}H_{i}^{r})=\lambda_{m}(C_{iir}H_{k}^{r}-C_{ikr}H_{i}^{r})$.

Thus, we conclude

Theorem 4.2. In GBK $-R - Landsberg space$, the tensors $(C_{iir}H_{hk}^r + C_{ikr}H_{ih}^r + C_{ihr}H_{ki}^r)$, $(C_{ir}^s H_{hk}^r + C_{kr}^s H_{ih}^r + C_{hr}^s H_{ki}^r)$ and $(C_{ijr} H_k^r - C_{ikr} H_i^r)$ behave as recurrent. Taking the covariant derivative for (4.7) with respect to x^m in the sense of Berwald, we get (4.14) $\mathcal{B}_m(K_{i,hk} + K_{ik,h} + K_{ihki}) = -2\{(\mathcal{B}_m C_{i,r})H_{hk}^r + C_{i,r}(\mathcal{B}_m H_{hk}^r) +$ $+({\cal B}_{m}C_{ikr})H_{ih}^{r}+C_{ikr}({\cal B}_{m}H_{ih}^{r})+({\cal B}_{m}C_{ihr})H_{ki}^{r}+C_{ihr}({\cal B}_{m}H_{ki}^{r}).$ Using (4.8), (1.12) and (4.11) in (4.14), we get (4.15) $(\mathcal{B}_{m} C_{ijr}) H_{hk}^r + (\mathcal{B}_{m} C_{ikr}) H_{ih}^r + (\mathcal{B}_{m} C_{ihr}) H_{k}^r$ Transvecting (4.15) by y^j , y^k and y^h , separately, using (1.4a), (1.5) and (1.12), we get (4.16) $(\mathcal{B}_{m} C_{ikr}) H_{h}^{r} - k/h = 0$, (4.17) H_i^r and (4.18) $(\mathcal{B}_m C_{iir}) H_k^r - j/k = 0$, respectively*.* Thus, we conclude

Theorem 4.3. In GBK $-R$ $-$ Landsberg space, we have the identities (4.15), (4.16), (4.17) *and (4.18).*

IIARD – International Institute of Academic Research and Development Page 18

5. Projection On Indicatrix For SomeTensors

Let us consider a $GBK - R -$ affinely connected space for which the associate curvature tensor R_{iikh} is recurrent in the sense of Berwald, i. e. satisfied the condition (3.4).

In view of (1.16), the projection of the associate curvature tensor $R_{i j k h}$ on indicatrix is given by

(5.1) a_{i} _h^b_h^c_h^d_h.

Taking the covariant derivative for (5.1) with respect to x^m in the sense of Berwald, we get (5.2) $B_m(p \cdot R_{i j k h}) = B_m(R_{abcd} h_i^a h_i^b h_k^c h_h^d)$.

Using the condition (3.4) and the fact h_{β}^{α} is covariant constant in (5.2), we get

(5.3) $B_m(p \cdot R_{i}{}_{l k h}) = \lambda_m R_{abcd} h_i^a h_i^b h_k^c h_h^d$

Using (5.1) in (5.3) , we get

 $B_m(p \cdot R_{ijkh}) = \lambda_m(p \cdot R_{iikh}).$ Thus, we conclude

Theorem 4.2.2. In $GBK - R -$ affinely connected space, the projection of the associate *curvature tensor* $R_{i j k h}$ *on indicatrix is recurrent in the sense of Berwald if and only if (3.5) holds good.*

Let us consider a GBK – R –Landsberg space for which the tensor $(C_{r h k} H_i^r - C_{r i k} H_h^r)$ is recurrent in the sense of Berwald, i. e. satisfied the (4.6).

In view of (1.16), the projection of the tensor $(C_{rhk}H_i^r - C_{rik}H_k^r)$ on indicatrix is given by (5.4) $p \cdot (C_{r h k} H_i^r - C_{r i k} H_h^r) = (C_{a b c} H_a^a - C_{a d c} H_b^a) h_r^a h_h^b h_k^c h_i^d h_a^r.$

Taking the covariant derivative for (5.4) with respect to x^m in the sense of Berwald, we get (5.5) $B_m[p \cdot (C_{rhk}H_i^r - C_{rik}H_h^r)] = B_m[(C_{abc}H_d^a - C_{adc}H_h^a)h_r^ah_h^kh_k^kh_l^a]$ Using (4.6) and the fact h^{α}_{β} is covariant constant in(5.5), we get

(5.6) $B_m[p \cdot (C_{rhk}H_i^r - C_{rik}H_h^r)] = \lambda_m (C_{abc}H_d^a - C_{adc}H_h^a)h_i^a h_i^b h_k^c h_h^d$ Using (5.4) in (5.6) , we get

 $B_m[p \cdot (C_{r h k} H_i^r - C_{r i k} H_h^r)] = \lambda_m[p \cdot (C_{r h k} H_i^r - C_{r i k} H_h^r)]$ Thus, we conclude

Theorem 4.2.3. In GBK – R – Landsberg space, the projection of the tensor $(C_{rhk}H_i^r)$ $C_{rik}H_h^r$) on indicatrix is recurrent in the sense of Berwald if and only if $C_{hir}H_k^r = 0$.

Let us consider a GBK – R –Landsberg space for which the tensor $(C_{i,r}H_{hk}^r + C_{ikr}H_{il}^r)$ $C_{\text{thr}}H_{\text{ki}}^r$) is recurrent in the sense of Berwald. i. e. satisfied (4.11).

In view of (1.16), the projection of the tensor $(C_{iir}H_{hk}^r + C_{ikr}H_{ih}^r + C_{ihr}H_{ki}^r)$ on indicatrix is given by

(5.7) $p \cdot (C_{ijr} H_{hk}^r + C_{ikr} H_{ih}^r + C_{ihr} H_{ki}^r) = (C_{abc} H_{de}^c + C_{aec} H_{bd}^c)$ $\binom{c}{e}h_i^a h_i^b h_r^c h_c^r h_d^h h_e^k$.

Taking the covariant derivative for (5.7) with respect to x^m in the sense of Berwald, we get

$$
(5.8) \tB_m[p \cdot (C_{ijr}H_{hk}^r + C_{ikr}H_{jh}^r + C_{ihr}H_{kj}^r)] = B_m[(C_{abc}H_{de}^c + C_{dec}H_{bd}^c + C_{adc}H_{eb}^c)h_i^ah_i^bh_i^ch_k^h h_k^e].
$$

Using (4.11) and the fact h^{α}_{β} is covariant constant in (5.8), we get

(5.9)
$$
\mathcal{B}_{m} p \cdot [(C_{ijr} H_{hk}^r + C_{ikr} H_{jh}^r + C_{ihr} H_{kj}^r)] = \lambda_m (C_{abc} H_{de}^c + C_{aec} H_{bd}^c + C_{adc} H_{eb}^c) h_i^a h_i^b h_r^c h_c^b h_a^b.
$$

Using (5.7) in (5.9) , we get

$$
\mathcal{B}_{m}[p \cdot (C_{ijr}H_{hk}^r + C_{ikr}H_{jh}^r + C_{ihr}H_{kj}^r)] = \lambda_m[p \cdot (C_{ijr}H_{hk}^r + C_{ikr}H_{jh}^r]
$$

 $_{ki}^{r})]$

Thus, we conclude

Theorem 4.2.4. In GBK – R – Landsberg space, the projection of the tensor $(C_{i,r}H_h^r)$ $C_{ikr}H_{ih}^r + C_{ihr}H_{ki}^r$) on indicatrix is recurrent in the sense of Berwald.

Let us consider a GBK – R – Landsberg space for which the tensor $(C_{ir}^S H_{hk}^T + C_{kr}^S H_{hl}^T)$ $C_{hr}^{s}H_{ki}^{r}$) is recurrent in the sense of Berwald, i. e. satisfied (4.12).

In view of (1.16), the projection of the tensor $(C_{ir}^{s}H_{hk}^{r} + C_{kr}^{s}H_{ih}^{r} + C_{hr}^{s}H_{ki}^{r})$ on indicatrix is given by

(5.10) $p \cdot (C_{ir}^s H_{hk}^r + C_{kr}^s H_{ih}^r + C_{hr}^s H_{ki}^r) = (C_{bc}^a H_{de}^c + C_{ec}^a H_{bd}^c$ $_{de}^a H_{eh}^c$) $h_a^s h_l^b h_r^c h_c^r h_d^h h_e^k$.

Taking the covariant derivative for (5.10) with respect to x^m in the sense of Berwald, we get (5.11) $B_m p \cdot (C_{ir}^s H_{hk}^r + C_{kr}^s H_{ih}^r + C_{hr}^s H_{ki}^r) = B_m (C_{bc}^a H_{de}^c + C_{ec}^a H_{bd}^c)$

$$
+C_{de}^a H_{eb}^c)h_a^s h_l^b h_r^c h_d^r h_b^h k_e.
$$

Using (4.12) the fact h^{α} is covariant constant in (5.11), we get

(5.12) $B_m p \cdot (C_{ir}^s H_{hk}^r + C_{kr}^s H_{lh}^r + C_{hr}^s H_{ki}^r) = \lambda_m (C_{hc}^a H_{de}^c + C_{ec}^a H_{hd}^c)$ $_{de}^{\alpha}H_{eb}^{c})h_{a}^{s}h_{i}^{b}h_{r}^{c}h_{c}^{r}h_{d}^{h}h_{e}^{k}$

Using (5.10) in (5.12), we get

 $\mathcal{B}_{m}[p](C_{ir}^{s}H_{hk}^{r}+C_{kr}^{s}H_{ih}^{r}+C_{hr}^{s}H_{ki}^{r})]=\lambda_{m}[p](C_{ir}^{s}H_{hk}^{r}+C_{kr}^{s}H_{li}^{r})$ s_{hr} H_{ki}^r)]

Thus, we conclude

Theorem 4.2.5. In GBK – R – Landsberg space, the projection of the tensor $(C_{ir}^S H_h^r)$ $C_{k r}^{s} H_{i h}^{r} + C_{h r}^{s} H_{k i}^{r}$ on indicatrix is recurrent in the sense of Berwald.

Let us consider a GBK – R – Landsberg space for which tensor $(C_{i,r}H_{k}^{r} - C_{ikr}H_{i}^{r})$ is recurrent in the sense of Berwald, i. e. satisfied (4.13).

In view of (1.16), the projection of the tensor $(C_{iir}H_k^r - C_{ikr}H_l^r)$ on indicatrix is given by (5.13) $p \cdot (C_{ijr}H_k^r - C_{ikr}H_l^r) = (C_{abc}H_d^c - C_{adc}H_b^c)h_i^ah_i^bh_i^ch_k^ch_k^h$

Taking the covariant derivative for (5.13) with respect to $x^{\overline{m}}$ in the sense of Berwald, we get (5.14) $B_m p \cdot (C_{iir} H_k^r - C_{ikr} H_l^r) = B_m (C_{abc} H_d^c - C_{adc} H_h^c) h_i^a h_i^b h_r^c h_k^r h_k^d$

Using (4.13) the fact h^{α} is covariant constant and in (5.14), we get

(5.15) $B_m p$. $(C_{i}{}_{i}rH_k^r - C_{i}{}_{k}rH_i^r) = \lambda_m (C_{abc}H_d^c - C_{adc}H_b^c)h_i^a h_i^b h_i^c h_k^r h_k^d$ Using (4.13) in (5.15), we get

 $\mathcal{B}_{m}[\mathbf{p} \cdot (\mathbf{C}_{iir}H_{k}^{r}-\mathbf{C}_{ikr}H_{i}^{r})]=\lambda_{m}[\mathbf{p} \cdot (\mathbf{C}_{iir}H_{k}^{r}-\mathbf{C}_{ikr}H_{i}^{r})].$ Thus, we conclude

Theorem 4.2.6. In GBK – R – Landsberg space, the projection of the tensor $(C_{i,r}H_k^r)$ $C_{ikr}H_i^r$) on indicatrix is recurrent in the sense of Berwald.

REFERENCES

Berwald, L.: On Finsler and Cartan geometries III, Two dimensioned Finsler spaces will rectilinear external, Ann. of Math., (2) 42, (1941), 84-122.

Berwald, L.: Über Finslersche und Cartansghe geometrie IV. Projktiv- krümmung allgemeiner affiner räume und Finslersche räume skalarer, krümmung, Ann. Math.,(2) 48, (1947), 755-781.

Cartan, É.: *Les espaces de Finsler*, Actualités, Paris, 79, (1934) ; 2 nd edit. (1971).

- **Izumi, H.:** On *P -Finsler space I, Memo. Defence Acad. Japan, 16, (1976), 133-138.
- Izumi, H.: On *P -Finsler space II, Memo. Defence Acad. Japan, 17, (1977), 1-9.
- **Izumi, H.:** On *P -Finsler space of scalar curvature, Tensor N.S., 38, (1982), 220-222.
- **Landsberg, G.**: Über die krumming in der variation rechnung, Math. Ann., 65, (1908), 313 349.
- **Matsumoto, M.**: On C-reducible Finsler space, M. S., 24, (1972), 92-137.
- **Matsumoto, M.**: Remarks on Berwald and Landsberg spaces, Contemporary Math. Vol. 195, (1996), 79-81.
- **Muhib, A. A. A.:** On independent components of tensor, I-relative tensor and R^h generalized trirecurrent Finsler spaces, M. Sc. Thesis, University of Aden, (Aden) (Yemen), (2009).
- **Pande, H.D** and **Singh, B.**: On existence of affinely connected Finsler space with recurrent tensor field, Reprinted from Indian Journal of Pure Applied Mathematics, Vol. 8, No. 3, (March 1977), 295-301.
- **Qasem, F. Y. A. and Baleedi, S. M. S.:** On a generalized BK recurrent Finsler spaces, International Journal of Sciences : Basic and Applied Research, Volume 28, No. 3, (2016),195 -203.
- **Qasem, F. Y. A. and Baleedi**, S. M. S.:Necessary and sufficint condition for generalized recurrent tensor, Imperial Journal of Interdisciplinary Research,Vol.2,Issu 11,(2016)**,**769**-77**6.
- **Rund**, **H.**: *The differential geometry of Finsler spaces*, Springer-Verlag, Berlin Göttingen Heidelberg, (1959); 2nd Edit. (in Russian), Nauka, (Moscow), (1981).
- **Verma**, **R.**: *Some transformation in Finsler spaces*, D.Phil. Thesis, University of Allahabad, (Allahabad) (India), (1991).
- **Yasuda, H.**: On Landsberg space, Tensor N. S., Vol. 34, (1980), 76-84.